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Introduction
Asthma, a chronic inϐlammatory disorder of the airways, 

presents a substantial global health concern due to its 
prevalence, morbidity, and impact on individuals’ quality 
of life Asthma, characterized by airway inϐlammation and 
hyperresponsiveness, poses signiϐicant healthcare challenges 
worldwide [1]. Characterized by recurrent episodes of 
breathlessness, wheezing, chest tightness, and coughing, 
asthma affects millions of people worldwide, transcending age, 
gender, and geographic boundaries [2,3]. Effective therapies 
have greatly improved asthma morbidity and mortality over 

the past 15 years, but the precise etiology of asthma remains 
multifaceted and not fully elucidated [4]. It arises from 
intricate interactions between genetic predisposition and 
environmental triggers, resulting in airway inϐlammation, 
bronchoconstriction, and hypersensitivity responses [5]. With 
its variable and complex nature, asthma poses signiϐicant 
challenges in terms of diagnosis, treatment, and management 
[5]. As a result, a comprehensive understanding of the 
underlying mechanisms driving asthma’s onset, progression, 
and exacerbations is crucial for developing targeted 
interventions, improving patient outcomes, and alleviating 
the burden of this pervasive respiratory condition. This study 

Abstract 

Background: Asthma, a chronic infl ammatory respiratory ailment, is characterized by variable 
airfl ow obstruction and heightened bronchial reactivity. Despite therapeutic advancements, 
a comprehensive comprehension of its underlying metabolic mechanisms remains elusive. 
Metabolomics has emerged as a powerful approach to investigating the complex connections 
between serum metabolites and disease pathogenesis. However, exploring the causal relationship 
between serum metabolites and asthma susceptibility demands meticulous examination to unveil 
potential therapeutic targets.

Methods: Mendelian randomization (MR) approach was explored to investigate the potential 
causal associations between serum metabolites and asthma risk. The main analysis employed the 
inverse variance weighted method, supported by supplementary approaches such as MR-Egger, 
weighted median, weighted mode, and sample mode. To enhance the strength and credibility of 
our results, we conducted sensitivity analyses encompassing heterogeneity testing, assessment 
of horizontal pleiotropy, and leave-one-out analysis. Additionally, pathway enrichment analysis 
was performed to further elucidate the results.

Results: We identifi ed 18 known and 12 unknown metabolites with potential associations 
with asthma risk. Among known metabolites, seven exhibited protective eff ects (e.g., 
4-acetamidobutanoate, allantoin, kynurenine, oxidized bilirubin*), while eleven were considered 
risk factors (e.g., ornithine, N-acetylornithine, alanine). Through the integration of four additional 
MR models and sensitivity analyses, we revealed a connection between 4-acetamidobutanoate 
and approximately 6% lower asthma risk (OR = 0.94, 95% CI: 0.90–0.98).

Conclusions: Our MR analysis uncovered protective and risk-associated metabolites, 
alongside 12 unknown metabolites linked to asthma. Notably,  4-acetamidobutanoate 
demonstrated a nominal 6% reduction in asthma risk, highlighting its potential signifi cance.
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aims to contribute to the ongoing exploration of asthma’s 
pathogenesis by investigating potential connections between 
serum metabolites and the risk of asthma using advanced 
analytical methodologies.

Metabolomics, a method to quantify small-molecule 
metabolites in biological samples, offers fresh perspectives 
on the connection between metabolic dysregulation and 
asthma [6]. Identifying unique metabolic patterns linked to 
asthma holds the potential for understanding disease variety 
and identifying new treatment targets. Increasing evidence 
points to metabolite alterations playing a role in asthma 
onset and worsening [7], highlighting the need for a thorough 
exploration of serum metabolisms’ association with asthma 
risk.

Mendelian Randomization (MR) is a statistical method 
that leverages genetic variants as instrumental variables to 
establish causal relationships between an exposure and an 
outcome in observational studies [8]. This method mimics 
randomized controlled trials by utilizing genetic variations as 
proxies for exposures, overcoming confounding and reverse 
causation typical in traditional observational studies [9]. The 
advantage lies in the natural randomization of exposure, akin 
to a randomized controlled trial [10], but without ethical 
complexities [11]. Additionally, MR can distinguish causation 
from correlation by assessing whether genetic variants 
impacting exposure also affect outcomes, shedding light on 
potential causal relationships [12]. MR’s value is evident in 
investigating hard-to-manipulate exposures, like risk factors 
such as smoking or alcohol consumption [13], to evaluate their 
impact on health outcomes [14]. Applying MR to study serum 
metabolites and asthma can distinguish whether speciϐic 
metabolic pathways cause the disease or result from it [11]. 
This approach offers the potential to uncover intervention 
targets and strategies for asthma relief.

We have integrated MR as a foundational element 
in our investigation. Our primary goal is to explore the 
potential causal link between serum metabolites and asthma 
susceptibility. By leveraging genetic variation for causal 
inference, we aim to gain deeper insights into the complex 
interaction of metabolites and asthma.

Materials and methods
Study design and date recourses

We conducted a two-sample MR investigation to explore 
the potential linkage between serum metabolites and asthma. 
This study was guided by three core assumptions (Figure 1)
[8]. The ϐirst involves strong and direct relationships 
between IVs and exposure. The second requires IVs to have 
no connections with confounding factors. Lastly, IVs should 
solely impact the outcome through exposure pathways.

For the GWAS analysis of serum metabolites, data was 
sourced from the Metabolomics GWAS server (https://
metabolomics.helmholtz-muenchen.de/gwas/), extracted 

from a comprehensive study by Shin, et al. [15]. The study 
cohort consisted of 7824 European adults who provided 
genetic samples [15]. Among over 2.1 million single nucleotide 
polymorphisms (SNPs), 486 metabolites underwent stringent 
quality assessments for analysis, encompassing 309 
established metabolites and 177 unidentiϐied ones. These 
309 known metabolites were grouped into eight biochemical 
categories: amino acids, peptides, lipids, cofactors and 
vitamins, carbohydrates, energy-related compounds, 
nucleotides, and exotic substances.

As for asthma data, it was obtained from the IEU 
OpenGWAS project’s platform (https://gwas.mrcieu.ac.uk/), 
speciϐically dataset  ukb-b-11297. The analysis encompassed 
14283 asthma cases and 98300 controls of European descent, 
employing around 8.3 million SNPs for association evaluations.

Instrumental variable selection

For assumption (1), stringent screening identiϐied IVs 
linked to blood metabolites. Due to a limited number of 
metabolite-associated SNPs, a slightly relaxed threshold 
(p < 1 × 10-5) was applied for SNP selection [16]. SNPs were 
grouped by eliminating Linkage Disequilibrium (LD) with R2 > 
0.1 within 500 kb. To address weak instrument bias, each SNP 
underwent R2 and F statistic calculations based on parameters 
like effect size (β), Standard Error (SE), Effect Allele Frequency 
(EAF), instrumental variable (R2), sample size (N), and 
SNP count (k). SNPs with F statistic < 10 were excluded as 
inadequate instruments. Next, metabolite-associated SNPs 
were isolated from the outcome. Harmonization ensured 
consistency between exposure and outcome variables, 
addressing palindromic effects and allelic inconsistencies.

Formula 1:
22 ×  × EAF × (1 - EAF)2R = 2 2[2 ×  × EAF × (1 - EAF) + 2 × SE  × N × EAF × (1 - EAF)]





Formula 2:

 
2R × (N  -2)

F = 21 - R

MR analysis

In this study, the primary two-sample MR analysis was 
conducted using the Inverse Variance Weighted (IVW) 

Figure 1: Study Design: Schematic overview of Two-Sample Mendelian Randomi-
zation Analyses in this study.
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model [17], hinging upon pivotal assumptions—relevance, 
independence, exclusivity of IVs, and the genetic variation’s 
exclusive inϐluence via exposure pathways. A confounding 
analysis of metabolites exhibiting IVW p < 0.05 revealed 
SNPs deviating from the MR Hypothesis. To ascertain IVs’ 
relationships with established risk factors (e.g., asthma, 
allergens, air pollution, etc.), the phenoscannerv2 website 
(http://www.phenoscanner.medschl.cam.ac.uk/) was utilized 
for IV metabolite investigation. Any SNPs showing associations 
with these confounders (p < 1 × 10-5) (Supplementary Table 1) 
were eliminated, along with outcome-related SNPs (p < 1 × 10-5)
within IVs, ensuring autonomy and exclusivity. Metabolites 
displaying IVW p < 0.05 underwent subsequent MR Analysis 
for reinforced result dependability. Moreover, for an in-depth 
exploration of causal effects, we incorporated four additional 
MR Models: MR Egger regression, weighted median method, 
simple model-based estimator, and weighted model-based 
estimator [18].

Sensitivity analysis

Experimental variations, analytical platforms, and study 
subject diversity introduce potential heterogeneity in two-
sample MR analyses, possibly causing biased causal effect 
estimates. To tackle this, we employed the Cochran Q test 
for heterogeneity assessment [19], where p < 0.05 signiϐies 
heterogeneity among IVs, while p > 0.05 indicates negligible 
impact on causal effect estimation.

The IVW method can be confounded by unknown factors 
and genetic multiplicity, introducing bias in causal effect 
estimates. To address this, we conducted a horizontal 
pleiotropy test by evaluating the MR-Egger regression 
intercept [20]. An intercept close to 0 (< 0.1) with p > 0.05 
indicates no evidence of horizontal pleiotropy. We also used 
the MR-PRESSO method to assess horizontal pleiotropy and 
identify outliers.

After heterogeneity and horizontal pleiotropy tests, a 
sensitivity analysis was performed using the leave-one-
out method [21] on qualiϐied metabolites. This systematic 
approach removes each SNP, aggregates remaining SNPs to 
calculate the overall effect, and evaluates each SNP’s impact 
on metabolites. Stable overall error lines after SNP exclusion 
(all error lines not crossing 0) indicate reliable results.

Metabolic pathway and enrichment analysis

The analysis was conducted utilizing an online 
metabolomics data analysis platform (https://www.
metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml), 
speciϐically harnessing the Enrichment Analysis and Pathway 
Analysis modules within the Annotated Features mode. The 
corresponding IDs of these metabolites were subsequently 
extracted from the Human Metabolome Database (https://
hmdb.ca/). Following this, the IDs were employed to 
interrogate pathways and enrichment using data derived from 
SMPDB (https://smpdb.ca/) and the KEGG database (https://

www.kegg.jp/). This comprehensive strategy facilitated the 
aggregation of metabolite sets and pathways linked to the 
realm of asthma.

Statistical analysis

LD analyses utilized PLINK software (v1.9). Two-sample 
MR and sensitivity analyses employed the TwoSample MR 
package (v0.5.6) and GWASglue MR package (v0.0.0.9000) in 
R (v4.2.3).

Results
MR analysis results

In this study, the IVW model served as the primary approach 
for estimating the causal relationships between blood 
metabolites and the risk of asthma (Supplementary Table 2).
 A total of 30 metabolites comprising 18 known metabolites 
and 12 unknown metabolites displayed a signiϐicant 
relationship (p < 0.05, IVW method) with asthma risk 
(Table 1). The 18 known metabolites could be classiϐied 
into distinct categories: Amino acids (ornithine, 
4-acetamidobutanoate, Kynurenine, N-acetylornithine, 
3-methyl-2-oxovalerate, 4-methyl-2-oxopentanoate, alanine), 
Cofactors and vitamins (X-11793--oxidized bilirubin*, bilirubin 
(E, Z or Z, E)*), Lipids (1-arachidonoylglycerophosphocholine*, 
X-13183--stearamide), Nucleotides (allantoin, X-11422--
xanthine), Peptides (glycylvaline, gamma-glutamylglutamate), 
Xenobiotics (3-methylxanthine, 1-methylxanthine), and 
Carbohydrates (threitol).

These known metabolites can be classiϐied into 11 
risk factors and 7 protective metabolites, based on their 
connection with asthma risk through the IVW method 
(Table 2). Of these, allantoin (OR = 0.97, 95% CI: 0.95-1.00), 
4-acetamidobutanoate (OR = 0.94, 95% CI: 0.90-0.98), 
kynurenine (OR = 0.93, 95% CI: 0.89-0.98), X-11793--oxidized 
bilirubin* (OR = 0.97, 95% CI: 0.95-0.99), bilirubin (E, Z or 
Z, E)* (OR = 0.98, 95% CI: 0.96-1.00), X-13183--stearamide 
(OR = 0.97, 95% CI: 0.94-0.99) and gamma-glutamylglutamate 
(OR = 0.98, 95% CI: 0.95-1.00) exhibited potential reductions 
in asthma risk (Table 2). Conversely, ornithine (OR = 1.09, 
95% CI: 1.02-1.17), N-acetylornithine (OR = 1.02, 95% 
CI:1.00-1.03), 3-methyl-2-oxovalerate (OR = 1.06, 95% CI: 
1.00-1.11), glycylvaline (OR = 1.03, 95% CI: 1.01-1.06), 
4-methyl-2-oxopentanoate (OR = 1.07, 95%CI: 1.00-1.13), 
alanine (OR =1.05, 95% CI: 1.00-1.11), 3-methylxanthine 
(OR = 1.04, 95%CI: 1.01-1.06), X-11422--xanthine (OR = 1.08, 
95% CI: 1.01-1.16),1-arachidonoylglycerophosphocholine* 
(OR = 1.04, 95% CI: 1.01-1.08), 1-methylxanthine(OR = 1.03, 
95% CI: 1.00-1.05) and threitol(OR = 1.04, 95% CI: 1.00-1.08) 
displayed potential increased asthma risk (Table 2).

Subsequently, we deployed an ensemble of four 
supplementary models (Bowden, et al. 2015) for the meticulous 
assessment of causal effects between these metabolites and 
the risk of asthma (Table 2). Three consistently demonstrated 
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 Table 1: Signifi cant metabolites related to the risk of asthma according to IVW results (P < 0.05).
ID Metabolite nSNP Beta SE P OR (95%CI)

M01107 allantoin 19 -0.03 0.01 2.11E-02 0.97(0.95-1.00)
M01493 ornithine 11 0.09 0.04 1.50E-02 1.09(1.02-1.17)
M01558 4-acetamidobutanoate 40 -0.06 0.02 5.81E-03 0.94(0.90-0.98)
M15140 kynurenine 39 -0.07 0.03 9.79E-03 0.93(0.89-0.98)
M15630 N-acetylornithine 27 0.02 0.01 1.56E-02 1.02(1.00-1.03)
M15676 3-methyl-2-oxovalerate 32 0.05 0.03 4.33E-02 1.06(1.00-1.11)
M18357 glycylvaline 7 0.03 0.01 2.00E-02 1.03(1.01-1.06)
M22116 4-methyl-2-oxopentanoate 14 0.06 0.03 3.86E-02 1.07(1.00-1.13)
M32339 alanine 40 0.05 0.03 4.35E-02 1.05(1.00-1.11)
M32445 3-methylxanthine 14 0.04 0.01 4.87E-03 1.04(1.01-1.06)
M32739 X-11422--xanthine 8 0.08 0.03 2.33E-02 1.08(1.01-1.16)
M33138 X-11793--oxidized bilirubin* 26 -0.03 0.01 4.01E-03 0.97(0.95-0.99)
M33228 1-arachidonoylglycerophosphocholine* 23 0.04 0.02 2.18E-02 1.04(1.01-1.08)
M34106 bilirubin (E, Z or Z, E)* 19 -0.02 0.01 2.03E-02 0.98(0.96-1.00)
M34389 1-methylxanthine 16 0.03 0.01 4.78E-02 1.03(1.00-1.05)
M34878 X-13183--stearamide 9 -0.03 0.01 1.17E-02 0.97(0.94-0.99)
M35854 threitol 13 0.04 0.02 4.40E-02 1.04(1.00-1.08)
M36738 gamma-glutamylglutamate 10 -0.03 0.01 4.34E-02 0.98(0.95-1.00)
M19415 X-06351 4 0.08 0.04 4.15E-02 1.09(1.00-1.18)
M22032 X-08766 16 -0.05 0.02 2.33E-02 0.95(0.92-0.99)
M22548 X-09026 15 -0.06 0.03 4.05E-02 0.94(0.89-1.00)
M32518 X-11204 42 -0.07 0.03 1.54E-02 0.93(0.88-0.99)
M32761 X-11444 19 -0.04 0.02 4.09E-02 0.96(0.92-1.00)
M33195 X-11850 8 0.02 0.01 3.30E-02 1.02(1.00-1.03)
M33751 X-12329 20 0.01 0.00 3.28E-02 1.01(1.00-1.01)
M34516 X-12833 13 -0.01 0.00 3.94E-02 0.99(0.99-1.00)
M34530 X-12847 8 0.02 0.01 3.17E-02 1.02(1.00-1.04)
M35978 X-14057 18 0.03 0.02 2.45E-02 1.03(1.00-1.07)
M36585 X-14658 11 0.03 0.01 4.18E-02 1.03(1.00-1.06)
M36673 X-14745 13 -0.05 0.02 4.04E-02 0.95(0.91-1.00)

nSNP, number of the SNP used for tests; SE: Standard Error; OR: Odds Ratio; 95% CI: 95% Confi dence Interval; X: Unknown metabolite

 Table 2: Five MR models estimate the causal relationships between 18 known metabolites and the risk of asthma and tests for heterogeneity and horizontal pleiotropy.
Metabolite Method nSNP P OR 95%CI) Pheter Phoriz

allantoin MR Egger 19 4.07E-01 0.98(0.93-1.03) 0.73 0.67 
Weighted median 19 1.24E-01 0.97(0.94-1.01)

Inverse variance weighted 19 2.11E-02 0.97(0.95-1.00) 0.78 
Simple mode 19 2.63E-01 0.97(0.91-1.02)

Weighted mode 19 1.65E-01 0.97(0.94-1.01)
ornithine MR Egger 11 1.17E-01 1.21(0.97-1.51) 0.46 0.34 

Weighted median 11 6.45E-02 1.10(0.99-1.21)
Inverse variance weighted 11 1.50E-02 1.09(1.02-1.17) 0.46 

Simple mode 11 3.53E-01 1.08(0.92-1.27)
Weighted mode 11 1.82E-01 1.10(0.96-1.26)

4-acetamidobutanoate MR Egger 40 7.34E-02 0.90(0.81-1.01) 0.49 0.42 
Weighted median 40 2.57E-03 0.90(0.85-0.97)

Inverse variance weighted 40 5.81E-03 0.94(0.90-0.98) 0.51 
Simple mode 40 1.27E-01 0.90(0.78-1.03)

Weighted mode 40 6.72E-03 0.89(0.82-0.96)
kynurenine MR Egger 39 1.98E-01 0.90(0.78-1.05) 0.07 0.67 

Weighted median 39 2.27E-01 0.96(0.89-1.03)
Inverse variance weighted 39 9.79E-03 0.93(0.89-0.98) 0.09 

Simple mode 39 7.18E-01 0.97(0.84-1.13)
Weighted mode 39 1.58E-01 0.92(0.82-1.03)

N-acetylornithine MR Egger 27 5.18E-02 1.02(1.00-1.05) 0.28 0.54 
Weighted median 27 4.81E-02 1.02(1.00-1.04)

Inverse variance weighted 27 1.56E-02 1.02(1.00-1.03) 0.30 
Simple mode 27 4.39E-02 1.06(1.00-1.11)

Weighted mode 27 5.50E-02 1.02(1.00-1.04)
3-methyl-2-oxovalerate MR Egger 32 2.10E-01 1.13(0.94-1.36) 0.50 0.46 

Weighted median 32 2.23E-01 1.05(0.97-1.13)
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Inverse variance weighted 32 4.33E-02 1.06(1.00-1.11) 0.52 
Simple mode 32 3.96E-01 1.07(0.92-1.25)

Weighted mode 32 2.25E-01 1.08(0.95-1.23)
glycylvaline MR Egger 7 7.41E-01 0.98(0.86-1.11) 0.41 0.41 

Weighted median 7 7.49E-02 1.04(1.00-1.08)
Inverse variance weighted 7 2.00E-02 1.03(1.01-1.06) 0.44 

Simple mode 7 1.17E-01 1.06(1.00-1.13)
Weighted mode 7 1.46E-01 1.05(0.99-1.12)

4-methyl-2-oxopentanoate MR Egger 14 9.76E-01 1.00(1.82-1.23) 0.63 0.56 
Weighted median 14 1.31E-01 1.07(0.98-1.16)

Inverse variance weighted 14 3.86E-02 1.07(1.00-1.13) 0.68 
Simple mode 14 3.20E-01 1.08(0.93-1.26)

Weighted mode 14 1.77E-01 1.11(0.96-1.28)
alanine MR Egger 40 7.30E-01 0.97(0.79-1.18) 0.64 0.38 

Weighted median 40 1.21E-01 1.06(0.98-1.14)
Inverse variance weighted 40 4.35E-02 1.05(1.00-1.11) 0.65 

Simple mode 40 6.05E-02 1.18(1.00-1.40)
Weighted mode 40 8.58E-02 1.15(0.98-1.35)

3-methylxanthine MR Egger 14 8.21E-01 0.99(0.93-1.06) 0.46 0.19 
Weighted median 14 1.35E-01 1.03(0.99-1.07)

Inverse variance weighted 14 4.87E-03 1.04(1.01-1.06) 0.39 
Simple mode 14 2.88E-02 1.08(1.02-1.15)

Weighted mode 14 4.99E-01 1.01(0.97-1.06)
X-11422--xanthine MR Egger 8 1.50E-01 1.16(0.97-1.39) 0.96 0.42 

Weighted median 8 2.14E-02 1.11(1.02-1.20)
Inverse variance weighted 8 2.33E-02 1.08(1.01-1.16) 0.94 

Simple mode 8 1.38E-01 1.11(0.98-1.25)
Weighted mode 8 1.10E-01 1.11(0.99-1.25)

Notes: nSNP, number of the SNP used for tests; OR, odds ratio; 95% CI, 95% confi dence interval; Pheter: PHeterogeneity; Phoriz: PHorizontal pleiotropy.

X-11793--oxidized bilirubin* MR Egger 26 5.33E-02 0.96(0.92-1.00) 0.31 0.51 
Weighted median 26 4.69E-02 0.97(0.94-1.00)

Inverse variance weighted 26 4.01E-03 0.97(0.95-0.99) 0.34 
Simple mode 26 2.71E-01 0.97(0.91-1.03)

Weighted mode 26 5.53E-02 0.97(0.94-1.00)
1-arachidonoylglycerophosphocholine* MR Egger 23 1.49E-01 1.06(0.98-1.13) 0.27 0.65 

Weighted median 23 1.19E-03 1.08(1.03-1.14)
Inverse variance weighted 23 2.18E-02 1.04(1.01-1.08) 0.31 

Simple mode 23 9.02E-01 0.99(0.89-1.10)
Weighted mode 23 1.32E-02 1.08(1.02-1.13)

bilirubin (E, Z or Z, E)* MR Egger 19 1.44E-02 0.94(0.90-0.98) 0.67 0.07 
Weighted median 19 2.52E-02 0.97(0.94-1.00)

Inverse variance weighted 19 2.03E-02 0.98(0.96-1.00) 0.48 
Simple mode 19 7.72E-02 0.95(0.91-1.00)

Weighted mode 19 3.52E-02 0.96(0.93-0.99)
1-methylxanthine MR Egger 16 4.14E-02 1.05(1.01-1.11) 1.00 0.18 

Weighted median 16 5.15E-02 1.03(1.00-1.07)
Inverse variance weighted 16 4.78E-02 1.03(1.00-1.05) 0.98 

Simple mode 16 3.66E-01 1.03(0.97-1.09)
Weighted mode 16 8.42E-02 1.03(1.00-1.07)

X-13183--stearamide MR Egger 9 3.51E-02 0.92(0.87-0.98) 0.72 0.14 
Weighted median 9 3.89E-01 0.98(0.94-1.02)

Inverse variance weighted 9 1.17E-02 0.97(0.94-0.99) 0.50 
Simple mode 9 6.08E-01 0.98(0.92-1.05)

Weighted mode 9 5.87E-01 0.98(0.92-1.04)
threitol MR Egger 13 8.89E-01 1.01(0.92-1.10) 0.37 0.46 

Weighted median 13 2.55E-01 1.03(0.98-1.08)
Inverse variance weighted 13 4.40E-02 1.04(1.00-1.08) 0.40 

Simple mode 13 4.76E-01 1.03(0.96-1.11)
Weighted mode 13 4.00E-01 1.03(0.97-1.09)

gamma-glutamylglutamate MR Egger 10 4.39E-02 0.93(0.88-0.99) 0.49 0.13 
Weighted median 10 1.20E-01 0.98(0.95-1.01)

Inverse variance weighted 10 4.34E-02 0.98(0.95-1.00) 0.32 
Simple mode 10 5.57E-01 0.99(0.94-1.03)

Weighted mode 10 9.26E-02 0.97(0.93-1.00)
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signiϐicance in a minimum of three MR models and 
consistently underscored the causal implications across the 
entire spectrum of models (Table 2). The three metabolites 
are 4-acetamidobutanoate (P IVW = 5.81 × 10−3, P MR Egger = 7.34 

× 10−2, P Weighted median = 2.57 × 10−3, P Simple mode = 1.27 × 10−1, 
P Weighted mode = 6.72 × 10−3), N-acetylornithine (P IVW = 1.56 × 

10−2, P MR Egger = 5.18 × 10−2, P Weighted median = 4.81 × 10−2, P Simple mode 

= 4.39 × 10−2, P Weighted mode = 5.50 × 10−2), and bilirubin (E , Z or 

Z, E)* (P IVW = 2.03 × 10−2, P MR Egger = 1.44 × 10−2, P Weighted median = 

2.52 × 10−2, P Simple mode = 7.72 × 10−2, P Weighted mode = 3.52 × 10−2) 
(Table 2). The congruence is manifested in the outcomes 
for 4-acetamidobutanoate (Figure 2A), N-acetylornithine 
(Figure 3A), and bilirubin (E, Z or Z, E) (Figure 4A) across all 
ϐive models. 

Assessment of the reliability and stability of the results

To ensure the credibility of our ϐindings, we subjected 
the reliability and consistency of outcomes pertaining to the 
known metabolites to stringent examinations. Employing MR-
Egger and MR-PRESSO methods, the results demonstrated 
p - values > 0.05. Furthermore, the nearly null intercept 
of the MR-Egger regression (< 0.1) signaled the absence 
of heterogeneity and horizontal pleiotropy within these 
metabolites (Table 2 and Supplementary Table 3).

Concerning the three metabolites, 4-acetamidobutanoate, 
N-acetylornithine, and bilirubin (E, Z or Z, E)*, which 
showcased remarkable resilience by consistently revealing 

signiϐicance in a minimum of three MR models, we executed 
sensitivity analyses utilizing a leave-one-out approach to 
scrutinize their stability. The outcomes revealed that all SNPs 
linked with 4-acetamidobutanoate exhibited insensitivity to 
the results (Figure 2B), afϐirming a steadfast and noteworthy 
6% reduction in asthma risk (Table 2, Figure 5). Conversely, 
it came to light that a solitary instrumental variable 
(rs7594485) associated with N-acetylornithine (Figure 3B), 
and two IVs (rs887829 and rs28900385) linked with bilirubin 
(E, Z or Z, E)* (Figure 4B), exerted considerable inϐluence on 
the outcome. Subsequently, upon exclusion of rs7594485, 
rs887829, and rs28900385, we proceeded to re-conduct 
MR analyses through the ϐive models, yielding results of 
N-acetylornithine and bilirubin (E, Z or Z, E)* that no longer 
retained signiϐicance (Table 3).

Metabolic pathway and enrichment analysis

In the pathway analysis of known metabolites, we 
uncovered ϐive metabolic pathways that exhibited relative 
signiϐicance (p < 0.05). The identiϐied metabolic pathways 
encompassed “ Valine, leucine and isoleucine biosynthesis” 
(p = 0.001), “Arginine biosynthesis” (p = 0.004), Arginine 
and proline metabolism (p = 0.028), and “ Valine, leucine and 
isoleucine degradation” (p = 0.031) (Supplementary Figure 1,
and Supplementary Tables 4,5). As for the enrichment 
analysis, the identiϐied metabolic pathways encompassed 
the “Urea Cycle” (p = 0.025) and “Porphyrin Metabolism” 
(p = 0.045) (Supplementary Figures 2-3, and Supplementary 
Table 6).

Figure 2: The causal relationships between 4-acetamidobutanoate and asthma, along with sensitivity analyses.
A: Scatter plots of the 5 MR models for 4-acetamidobutanoate with the risk of asthma. light blue line: inverse variance weighted; blue line: MR Egger; light green line: simple 
model-based estimator; green line: weighted median estimator; red line: weighted model-based estimator. B: Forest plots show the results of leave-one-out analyses of 
4-acetamidobutanoate.
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Figure 3: The causal associations between N-acetylornithine and asthma, followed by in-depth sensitivity analyses.
A: Illustrations of scatter plots for N-acetylornithine’s association with asthma risk across the 5 MR models. The light blue line represents inverse variance weighted, blue 
for MR Egger, light green for the simple model-based estimator, green for the weighted median estimator, and red for the weighted model-based estimator. B: Forest plots 
visually display the outcomes from leave-one-out analyses for N-acetylornithine.

Figure 4: The causal relationships between bilirubin (E, Z or Z, E)  and asthma, and their subsequent sensitivity analyses.
A: The risk of asthma is depicted in scatter plots across 5 MR models for bilirubin (E, Z or Z, E). The associations are represented by diff erent lines: light blue for inverse 
variance weighted, blue for MR Egger, light green for the simple model-based estimator, green for the weighted median estimator, and red for the weighted model-based 
estimator. B: Leave-one-out analyses of bilirubin (E, Z or Z, E) are displayed in forest plots, providing insights into the results.

Table 3: Re-analyses results of fi ve MR models after the removal of sensitive SNP for N-acetylornithine and bilirubin (E, Z or Z, E).
Metabolite Method nSNP P OR (95%CI)

MR Egger 26 1.08E-01 1.02(1.00-1.05)
Weighted median 26 1.26E-01 1.02(1.00-1.03)

N-acetylornithine Inverse variance weighted 26 5.28E-02 1.02(1.00-1.03)
Simple mode 26 2.07E-01 0.96(0.89-1.02)

Weighted mode 26 1.13E-01 1.02(1.00-1.04)
MR Egger 17 9.13E-02 0.94(0.88-1.01)

Weighted median 17 1.94E-01 0.98(0.94-1.01)
bilirubin (E,Z or Z,E)* Inverse variance weighted 17 2.39E-01 0.99(0.96-1.01)

Simple mode 17 1.85E-01 0.95(0.89-1.02)
Weighted mode 17 1.48E-01 0.95(0.89-1.01)

Notes: nSNP: number of the SNP used for tests; OR: Odds Ratio; 95% CI: 95% Confi dence Interval
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Discussion
Asthma pathogenesis involves complex interactions 

between genetic, environmental [22], and immunological 
factors [23,24]. The noteworthy interest in metabolic 
dysregulation’s role in asthma susceptibility and progression 
has grown [25-27]. Metabolomic studies have unveiled 
identiϐiable metabolic patterns associated with asthma. 
Altered metabolite levels in asthma individuals, compared to 
healthy controls, suggest a credible link between metabolic 
disruptions and disease expression [28]. The clinical 
implications of metabolism’s importance in asthma are 
profound. Metabolomic proϐi ling offers avenues for identifying 
crucial biomarkers, essential for asthma diagnosis, severity 
assessment, and treatment response prediction.

In this study, we carried out an impartial two-sample 
MR analysis aimed at investigating the potential causal link 
between 486 blood metabolites and the susceptibility to 
asthma. To fortify the rigor of our inquiry, we meticulously 
collected the most extensive Genome-Wide Association Study 
(GWAS) data and comprehensive asthma GWAS summary 
data from publicly accessible databases. By leveraging 
genetic variants as IVs, we discerned 18 established and 
12 uncharacterized metabolites that exhibited promise as 
potential predictors of asthma risk, as elucidated by our 
primary IVW analysis. Within this group of recognized 
metabolites, they can be compartmentalized into seven factors 
of protection (allantoin, 4-acetamidobutanoate, kynurenine, 
X-11793--oxidized bilirubin*, bilirubin (E, Z or Z, E), 
X-13183—stearamide, and gamma-glutamylglutamate) and 
eleven factors of risk (ornithine, N-acetylornithine, 3-methyl-
2-oxovalerate, glycylvaline, 4-methyl-2-oxopentanoate, 
alanine, 3-methylxanthine, X-11422--xanthine, 
1-arachidonoylglycerophosphocholine*, 1-methylxanthine, 

and threitol). Through the metabolic pathway analysis of the 
selected known metabolites, they were concentrated in the 
metabolic pathways related to urea metabolism and arginine 
metabolism, suggesting that metabolites may play a certain 
role in the pathogenesis and progression of asthma through 
these pathways.

To augment the reliability and stability of our ϐindings, we 
employed supplementary MR models. The outcomes uniformly 
substantiated the correlation between 4-acetamidobutanoate, 
N-acetylornithine, and bilirubin (E, Z or Z, E)* with a 
reduced asthma risk across a minimum of three MR models. 
Nonetheless, prudence is advised when construing the causal 
link involving N-acetylornithine and bilirubin (E, Z or Z, E)*, 
given that they faltered in the concluding leave-one-out 
analysis, necessitating further investigation. 

Also recognized as 4-acetamidobutanoic acid or N-acetyl-
4-aminobutyric acid, 4-acetamidobutanoate belongs to the 
category of gamma amino acids and derivatives [29]. It emerges 
as a byproduct of the urea cycle and the metabolism of amino 
groups, while also originating from NAD-linked aldehyde [30]. 
In our study, through metabolic pathway enrichment analysis, 
we found that 4-acetamidobutanoate is involved in the Urea 
Cycle, and the metabolism of valine, leucine, isoleucine, and 
arginine. The urea cycle, critical for detoxifying ammonia, 
sparks interest in its potential asthma link [31]. Recent research 
highlights its role in immune response and inϐlammation 
modulation, central to asthma [32]. Ammonia, a byproduct, 
impacts airway muscle contraction and bronchoconstriction, 
pivotal in asthma features [33]. Valine, leucine, and isoleucine, 
termed branched-chain amino acids, have emerged in asthma 
discussions [34]. Studies hint at associations between altered 
amino acid levels and asthma susceptibility or severity [35]. 
Arginine, a semi-essential amino acid, gains attention for its 

Figure 5: Graphical summary of the Mendelian Randomization Study.



Causal Link between Human Blood Metabolites and Asthma: An Investigation Using Mendelian Randomization

www.allergyimmunoljournal.com 020https://doi.org/10.29328/journal.aaai.1001032

possible asthma role [36]. It affects immune responses and 
airway function, vital in asthma development [37]. Arginine 
metabolism produces Nitric Oxide (NO), inϐluencing airway 
smooth muscle tone and inϐlammation [38]. Elevated NO 
levels in asthma connect arginine to bronchial constriction 
and symptoms [39].

4-acetamidobutanoate presence extends across all 
eukaryotic organisms, spanning from yeast to humans, and 
is detectable in various food items like blackberry, cassava, 
pepper, and napa cabbage [40]. Although speculative, it is 
plausible that the consumption of these foods might have 
the potential to mitigate asthma incidence.  Nonetheless, the 
precise causal correlation between 4-acetamidobutanoate 
and asthma remains partially apprehended. Despite this, 
our pioneering ϐindings unveil an extraordinary revelation: 
4-acetamidobutanoate exhibits a substantial connection, 
linked to a noteworthy 6% reduction in asthma incidence.

Besides serum metabolites, various factors inϐluence 
asthma risk, including lifestyle choices such as smoking 
[41]and alcohol use [42], which heighten susceptibility and 
exacerbations. Obesity also increases asthma risk due to 
inϐlammation and respiratory effects [42]. Puberty timing, 
particularly in females, impacts asthma via hormonal 
shifts affecting airway responsiveness [43]. Environmental 
factors like allergens, pollution, and infections contribute. 
Genetic predisposition, observed in familial asthma cases, is 
signiϐicant [44]. Prenatal factors like maternal smoking and 
allergen exposure elevate offspring asthma chances [45]. 
These multifaceted inϐluences involve lifestyle, environment, 
genetics, and hormones, molding asthma’s development 
and severity. Recognizing these complexities is also vital 
for comprehensive asthma prevention and management 
approaches.

Our study introduces signiϐicant innovations. Firstly, we 
adopt a molecular mechanism perspective, treating blood 
metabolites as exposure factors. This approach establishes 
a robust theoretical foundation and holds clinical research 
value in probing causal connections between metabolites 
and asthma risk. Secondly, our rigorous commitment to 
high-quality control, diverse methodologies, and multiple 
analytical approaches ensures comprehensive evaluation 
of causal effects, guaranteeing the reliability and stability of 
our ϐindings. Thirdly, unlike prior MR analyses focused on 
individual exposures, our thorough examination of numerous 
blood metabolites presents substantial analytical challenges. 
Our proposed analytical strategy offers valuable insights for 
comparable investigations.

However, we acknowledge limitations. Two-ϐifths of the 
asthma risk predictors identiϐied, using the IVW method, are 
unidentiϐied metabolites with uncertain functional proϐiles, 
limiting the scope of our ϐindings. While a nominal causal link 

between 4-acetamidobutanoate and asthma is evident through 
our unbiased two-sample MR approach, this relationship 
remains theoretical, pending mechanistic validation. Thus, 
further inquiry is essential to clarify 4-acetamidobutanoate’s 
role in asthma pathogenesis and establish a conclusive 
conϐirmation of this causal connection. By embracing these 
limitations as avenues for growth, our study provides a 
foundation for future research, enriching our understanding 
of asthma and its molecular basis.

Conclusion
We utilized a two-sample MR approach to uncover 

causal links between 486 blood metabolites and asthma in 
a vast cohort of over 0.11 million individuals of European 
descent. Through meticulous analysis, we identiϐied 30 serum 
metabolites associated with asthma, comprising 7 protective 
metabolites, 11 risk factors, and 12 previously unknown 
metabolites. Notably, our ϐindings suggest a 6% reduction 
in asthma risk attributed to 4-acetamidobutanoate. These 
revelations signiϐicantly enhance our grasp of the intricate 
interplay between blood metabolites and asthma, offering the 
potential for personalized insights or markers that elucidate 
biological variations in disease status. By illuminating these 
crucial connections, our study paves the way for future 
research avenues, propelling advancements in asthma 
prevention, diagnosis, and management, and ultimately 
fostering improved global lung health and well-being.
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