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INTRODUCTION 
Allergic diseases, including asthma are often considered to be related to our genes 

and/or environment. However, changes of the genetic code in a population typically 
take a long period of time, suggesting that the recent, rapid increase in the prevalence 
of allergic diseases is more likely to be due to the changes in our environment, which 
may alter gene expression (gene/environment interaction [1]). Further, during the 
last few decades, campaigns to promote smoking cessation in the US and elsewhere 
have reduced exposure to direct and second hand smoke in pregnant women and 
their children. The concentrations of the six other common air pollutants (ozone, 
carbon monoxide, nitrogen dioxide, particulate matter, sulfur dioxide and lead) 
have also decreased by 60% during these decades (EPA, http://www.epa.gov/
airtrends/aqtrends.html), yet the overall prevalence of asthma has increased during 
this period. Another important consideration is that the increasing prevalence of 
allergic rhinitis and asthma is seen predominantly in women after adolescent, while 
prevalence of allergic rhinitis and asthma in boys and young men decrease during 
and after adolescent. These observations coupled with an increase in the incidence 
of new or recurrent asthma in women who took hormone replacement therapy after 

SUMMARY

Exposure to environmental chemicals is a potential cause for the rapid increase in the 
prevalence of allergic asthma over the last few decades. The production of the environmental 
estrogen bisphenol A, the monomer of polycarbonate plastics, has increased rapidly over the last 
50 years, such that bisphenol A is one of the most highly produced chemicals. It is detectable in 
the urine of the vast majority of the human population. While the relationship between the increase 
of bisphenol A in our environment and the prevalence of asthma does not prove a cause and 
effect relationship, it provides a strong rationale for experiments that have tested the hypothesis. 
Because of its small molecular size and hydrophobicity, bisphenol A is easily transferred from the 
mother to the fetus, via the placenta and in breast milk. 

We have reviewed all the publications available on medline on the human epidemiological 
studies of the early bisphenol A exposure on the development of allergic asthma and experimental 
studies using mouse model of the effects of early bisphenol A exposure on the development of 
asthma. There are eight human epidemiological studies and fi ve mouse model studies currently 
published. 

The human studies suggest that bisphenol A exposure in early life enhances the likelihood of 
developing asthma on at least one of the study groups. The effects of early bisphenol A exposure 
were observed as an enhanced development of asthma before adolescent in the animal model.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.haard.1001003&domain=pdf&date_stamp=2017-07-10
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menopause [2], suggest an effects of female hormones on the development of allergic 
diseases, including asthma. Other reports show the human and mouse fetuses are T 
helper type (Th) 2 dominant [3,4] and endogenous (e.g. estradiol, E2) and exogenous 
(environmental) estrogens induce Th2 development [5-7]. 

Based on these clinical observations and the concomitant high production and 
ubiquitous exposure of humans to BPA, we chose to focus our studies of asthma 
development on environmental estrogens, and particularly on BPA, as a model for 
assessing the effects of exposure to estrogenic chemicals on the development of allergic 
diseases. We review here evidence that early life exposures to BPA may enhance the 
development of allergic asthma (Figure 1). 

BPA was ϐirst synthesized by a Russian chemist Alexander Dianin in 1891, and tests 
were conducted in the 1930s to determine whether BPA could be used for hormone 
replacement therapy [8,9]. However BPA proved less effective than other synthetic 
estrogens. In 1952, manufacturing processes for polymerizing BPA monomers to 
form polycarbonate plastic were developed and the production of BPA has increased 
exponentially since then (Figure 2, modiϐied from [10]). In addition to polycarbonate 
plastic containers, BPA is widely used as a coating of metal cans, baby bottles, toys 
and receipt papers, and to a lesser extent in other household plastics. Thus, BPA is 

Figure 1: The structures of endogenous estrogens and BPA.

Figure 2: Temporal relationships between the increases of asthma prevalence and BPA production.
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now ubiquitous, not only in our environment, but also in human tissues and secretions 
[11]. Its small molecular weight (228.29 g/mol) and hydrophobicity also allow BPA 
to be rapidly transferred to fetus through placenta and also into the breast milk [12], 
providing pathways into the next generation. 

BPA exposure and metabolism in humans 

We identiϐied eight English language manuscripts concerning the relationship 
between human exposure to BPA and the subsequent development of asthma. These 
exposures are mainly via consumption of food and drinks [13], and also non-oral 
exposures such as dermal exposure is reported [14,15]. BPA is absorbed through 
gastrointestinal tract and enters the hepatic portal vein to the liver, and then to 
the systemic circulation. Most of the absorbed BPA is conjugated to glucuronide by 
predominantly by UDP-glucuronosyltransferases in the intestinal epithelium and in 
liver. This makes BPA more hydrophilic and allows it to be excreted into urine [16]. 
However, the biologically active form is predominantly residual unconjugated BPA, 
which can bind to estrogen receptors (ERs) in various tissues and alters biological 
processes [17]. Thus, it is the small amount of unconjugated BPA in the blood and 
tissues, termed the “internal dosage”-as assessed from blood measures-that is 
likely to have the most important effects in human toxicology [18]. However, BPA 
concentrations/excretion into the urine “exposure assessment from urinary measures 
of BPA” is most commonly used in epidemiological studies. 

Effects of BPA exposure on allergic diseases-human epidemiological studies 

There are eight epidemiological studies of the effects of BPA exposure on the 
development of allergic asthma published accessible in Medline: Vaidya et al. [19] 
Spanier et al. [20,21], Donohue et al. [22], Kim et al. [23], Whyatt et al. [24], Gascon 
et al. [25] and Wang et al. [26] (Table 1). Each of these eight human epidemiological 
studies identiϐied at least one indicator of an association between BPA exposure and 
asthma, which was signiϐicantly increased with prenatal or self (direct) BPA exposure 
of children. 

Vaidya et al., performed a secondary analysis of urinary BPA data from the National 
Health and Nutrition Examination Survey (NHANES) 2005-2006 (http://www.cdc.
gov/nchs/nhanes.htm). Using the data from 10,348 subjects older than 6 years, 
they examined the urinary BPA concentrations/excretion (BPA/Cr) ratio from 2,548 
(24.6% of the total subjects: 1,270 males and 1,278 females). They then related the 

Table 1: Human epidemiological data of early BPA exposure on the development of allergic asthma.
Author
year

Recruitment
N                 year

BPA
measure

Outcome
wheezing

asthma diagnosis

Vaidya
2012

10,348  2005-2006 6yr- 6yr- 6yr-         asthma in females
                allergen specifi c IgE antibodies
                asthma episode in past 12mo in females

Spanier
2012

365      2003-2006 G16, G26w every 6mo to 
3yr

                wheeze at age 6mo w uBPA at 16 w
                ~wheeze at age yr w uBPA

Donohue
2013

568       1998-2006 3rd Trimester 3, 
5, 7yr

5, 6, 7yr 5-12yr     wheeze at age 5yr w prenatal uBPA
                 wheeze at age 5&6yr w uBPA at age 3 yr
                 wheeze at age 7yr w uBPA at age 7yr

Spanier
2014

208       2003-2006 G16, G26w every 6mo to 
5yr

4, 5yr       FEV1 at age 4yr w maternal uBPA   
                 wheezing w 16w uBPA
                 ~FEV1 or wheeze w child uBPA

Kim
2014

127 7-8yr 9-10, 11-12yr 9-12yr     wheeze at 11-12yr w uBPA at 7-8yr in girls
                asthma at 11-12yr w uBPA at 7-8yr in girls

Whyatt
2014

292       1998-2006 3, 5, 7yr 5, 6, 7, 9, 11yr 5yr    asthma, persistent wheeze, exsecise-induced  
wheeze among prenatal MBzP only                                                                                                 

Gascon
2015

462        2004-008 G12, G32w 6mo, 14mo, 4yr,
7yr

7yr     wheeze at any age chest infection at any age 
bronchitis

Wang
2016

453 3, 6yr 3, 6yr 3,6yr               asthma at 3, 6yr
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urinary BPA excretion to the blood concentration of total IgE, speciϐic IgE antibodies 
against 19 allergens, and other urinary environmental estrogens (Benzophenone-3, 
4-tert-Octylphenol, Triclosan, Methyl paraben, Ethyl paraben, Propyl paraben and 
Butyl paraben). The diagnosis of asthma was based on the history of wheezing, the 
number of eosinophil in peripheral blood, total IgE concentration and history of other 
atopic diseases. Urinary BPA concentration had a signiϐicant positive association with 
increased concentrations of IgE antibodies to various speciϐic allergens and with the 
history of asthma episodes in the previous 12 months among women, but not with 
those in men. 

Spanier et al., collected samples of urine from 365 women at 16±2 weeks of 
pregnancies, in their birth cohort study from 2003 to 2006 in Cincinnati, Ohio, and 
measured the urinary BPA concentration and BPA/creatinine ratios in samples from 
women older than 18 years and paired these with their children. They followed the 
mother-infant pairs for ϐive years and reported the follow-up data collected from phone 
interviews when each child was 6, 18 and 30 months old and home visits at child’s age 
of 12, 24 and 36 month, and 3 and 5 years of age [20,21]. They used a questionnaire 
from National Health and Nutrition Examination Survey (NHANES) to identify those 
with wheezing, “Has [child’s name] had wheezing or whistling in his/her chest in the 
last 6 months?” They also conducted a trajectory analysis to identify distinct groups 
of wheeze trajectories and phenotypes. This study identiϐied a signiϐicant correlation 
between maternal urinary BPA concentration at 16 (but not 26) weeks of pregnancy 
with child’s wheezing by postnatal age 6 months. Spanier et al., continued this study 
using phone interviews and tests of lung function on 4 and 5 year olds. They identiϐied 
a signiϐicant association between maternal urinary BPA concentrations at 16 and 26 
weeks of pregnancy with decreased forced expiratory volume in the ϐirst second of 
expiration (FEV1) of 4 years old children, but not with FEV1 at 5 years. 

Donohue et al., recruited 568 mothers of African American or Dominican origin 
and their child pairs, who had lived in Northern Manhattan or South Bronx for at 
least 1 year, from 1998 to 2006. They analyzed their urinary BPA data from late in 
pregnancy, when the children were 3, 5 and 7 years old. Wheezing history was elicited 
for the previous 12 months and at 5, 6 and 7 years old, and one clinic visit between 
the ages of 5-12 years old. They identiϐied an inverse association between maternal 
urinary BPA concentration during late pregnancy and child’s wheezing at age 5 and 
6 years. However, they also noted a signiϐicant correlation between the child’s own 
urinary BPA concentration and wheezing at age 7 years. There was also a signiϐicant 
correlation between the child’s urinary concentration of BPA and the prevalence of 
asthma at 3, 5 and 7 years of age [22]. 

Kim et al., collected 127 urine samples from 7-8 year old elementary school children 
in Seoul, Korea in 2005, who agreed to a baseline survey and a methacholine challenge 
test. They then identiϐied their “wheezing outcomes” at age 9-10 and 11-12 years 
old. Children were considered to have asthma when they met either of the following 
criteria: 1) “wheezing or the use of asthma medication in the previous 12 months” or 
2) the same history combined with an asthma diagnosis or a history of wheezing”. They 
identiϐied a signiϐicant correlation between urinary BPA concentration at 7-8 years old 
and wheezing and asthma at 11-12 years old among girls, but not in boys [27]. The 
Whyatt et al., group also analyzed the association of asthma and exposure combination 
of BPA, di-n-butyl phthalate and butylbenzyl phthalate (BBzP) among 229, inner-
city women and their children at age 5-11 years [22]. They measured phthalates in 
spot urine collected from the mother during pregnancy at 33.9±3.1 week’s gestation 
and BPA in child urine at 3, 5 and/or 7 years old. They found signiϐicant association 
between the children’s urinary BPA concentration and respiratory outcomes, in those 
from women whose maternal prenatal urinary monobenzyl phthalate (MBzP) were 
above median, but not in those children from women whose values below the median. 
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In 2015, Gascon et al., reported a correlation between prenatal BPA exposure and 
respiratory tract infection and allergy, among subjects recruited in Catalonia, Spain, 
from 2004 to 2008 [25]. They analyzed the maternal urinary concentration of BPA at 
12 and 32 weeks of gestation in 391 women and related these to symptoms of allergy, 
atopy and respiratory infections in the children at 6 and 14 months, and 4 and 7 years 
old. They found the relative risks of wheeze, chest infections and bronchiolitis, at 
any age, increased with each doubling in the concentration of the mother’s prenatal 
urinary BPA [25]. 

Wang et al. [26], recruited 453 children age 3 and 6 years old from Taiwan and 
analyzed their own urinary BPA concentration, serum total IgE and diagnosis of asthma 
using the questionnaire from International Study of Asthma and Allergies in Childhood 
(ISAAC). They found an association between their urinary BPA concentration and 
asthma, as well as serum total IgE concentration. 

One of the major differences between these studies was the timing/ages at which 
the subjects were tested for BPA exposure, particularly between pre and postnatal 
exposures. Interestingly, two recent reports from a consortium of European states 
showed a strong correlation between the mother’s urinary BPA concentration and 
those of their child (p=0.001 and <0.001) at various postnatal ages [28,29]. This 
ϐinding may suggest that a dietary lifestyle of the household is a major determinant of 
the extent of exposure to BPA for all of the family members. 

Effects of BPA on the development of asthma-studies from mouse models 

We identiϐied six reports, two from our group [30,16] and one each from Bauer 
et al. [31], Petzold et al. [32], O’Brien et al. [33] and Nygaard et al. [34], concerning 
the effects of maternal BPA exposure on the development of asthma in mouse models 
(Table 2). Only mouse were used on the asthma model study for the effects of BPA, 
most likely because of the availability for lung function testing devices, whole body 
plethysmography and direct measurement of airway resistance. 

To our knowledge, we were the ϐirst to report an effect of maternal BPA exposure 
on the development of asthma in their offspring. In our studies, we added 10 μg/
ml of BPA to the drinking water of 8-10 weeks old female BALB/c mice (F0, about 
2 mg BPA/KgBW/day), starting seven days before mating and continued throughout 
their pregnancy and nursing period. This protocol produced a similar range of BPA 
concentrations in the sera of the offspring (F1) to that described in human studies [18]. 
Some of the pups were sensitized to ovalbumin (OVA), using a “suboptimal” protocol, 
[35] in order to avoid overwhelming effects of OVA sensitization. The mice received a 
single intraperitoneal (i.p.) injection of 5 μg OVA on post natal day (PND) 4 and they were 
exposed to 3% OVA aerosol on PND 14-16. Airway hyperresponsiveness (AHR) was 
analyzed 48 hours after the last aerosol exposure. Serum OVA-speciϐic IgE antibodies 
were assessed by ELISA, and eosinophilic airway inϐlammation were assessed by 
enumerating each cell type in the bronchoalveolar lavage ϐluid (BALF). Only the OVA 
sensitized pups from BPA exposed mothers (BPA/OVA) had signiϐicant increases in 
their serum IgE anti-OVA antibody concentration, and enhanced eosinophil numbers 
in BALF and AHR, relative to all three control groups (no BPA/no OVA, no BPA/OVA 
and BPA/no-OVA) [36]. Interestingly, these same indicators of allergic asthma were 
also observed in the F2 and F3 generation of females, despite the absence of additional 
exposures to BPA (non-published data). 

We next examined the effect of prenatal and postnatal BPA exposure, separately 
[16]. Using the same exposure protocol as described above, we transferred half of the 
litters between BPA exposed and normal water control dams, within 48 hours of their 
birth, and used the same protocol to sensitize both groups, creating eight perinatal 
exposure/postnatal exposure/and sensitization groups. These experiments indicated 
that prenatal BPA exposure is necessary to produce the asthma phenotype in pups 
sensitized, using our “suboptimal” OVA protocol. 
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Table 2: Mouse model studies of early BPA exposure on the development of asthma phenotype.
Author Strain BPA exp BPA dose Allergen (OVA) sensitization analyses

Year
Star end μg/KgBW/d route Systemic Airway day
(PND) (μg) dose age dose age (PN)

(PN) (PN)

Midoro BALB/c -28 17 2,000 drinking 5 μg x 1 i.p. 4d
3% aerosol 
10min

13-15d 17d  AHR in BPA/OVA
  Eos in BALF in BPA/OVA 
  serum IgE anti-OVA in BPA/OVA2010 water x3d

Nakajima BALB/c -28 21 2,000 drinking 5 μg x 1 i.p. 4d
3% aerosol 
10min

18-20d 22d
  AHR in BPA/BPPA/OVA and BPA/no 
BPA/OVA

2012 -28 0 water x3d
  Eos in BALF in BPA/BPA/OVA and BPA/
no BPA/OVA

0 21

Bauer C57BL/6 -21 21 0.5,5,50,500 gavage 100 μg x 2 i.t. 6w
1% aerosol 
1hr

8w 8w   Nt in BALF in male BPA50/OVA woLPS

2012 w/wo 100 ng LPS 1d ~Eos in BALF in male/femle BPA/OVA
mucosal 
sensitization

 lung histology in female high BPA/OVA 
wo LPS and female BPA/OVA w LPS
 lung histology in male BPA/OVA wo 
LPS

Bauer C57BL/6 -21 21 0.5,5,50,500 gavage
100 μg x 2 
i.p.

6w
1% aerosol 
1hr

7-11w 7-11w
  Eos in BALF in female BPA0.5, 5, 50/
OVA

2013 1d ~Eos in BALF in female BPA500/OVA
peritoneal 
sensitization

  serum IgE anti-OVA in female BPA/OVA
~AHR in female BPA/OVA

Petzold BALB/c -28 21 1,000 drinking 20 μg x 2 i.p. 6&8w
20 μg/40 μL 
i.n.

8&9w 9 w ~AHR

2014 6d
~Eos in BALF
~serum IgE anti-OVA
~IL-4, IL-5, IL-13, IFNγfrom splenocytes

O'Brien BALB/c -35 21 0.008, 8, 8,400 chow 20 μg x 1 i.p. 12w
3% aerosol 
20min

13w 13w  serum IgE anti-OVA in low BPA

2014 x2d
  serum IgE anti-OVA in moderate and 
high BPA
 IL-13 from splenocyte from moderate & 
high BPA/OVA
   IFNγ from splenocyte from BPA/OVA
~IL-4, IL-5, TNFa from splenocytes from 
BPA/OVA
 total Leu in BALF in female high BPA/
OVA
total Leu in BALF in male low & high 
BPA/OVA
Eos female high BPA/OVA
~Mp, PMN, Ly in females BPA/OVA
Mp, PMN, Eos in male low BPA/OVA
PMN, Ly in male high BPA/OVA
PMN in male moderate BPA/OVA
IL-4, IL-13, TNFa in BALF from female 
low and high BPA/OVA
~IL-4, IL-13, TNFa in BALF from male low 
and high BPA/OVA
IL-17 in BALF from BPA/OVA
CysLTs in BALF from high BPA/OVA
~Eotaxin-1 in BALF from BPA/OVA
 RANTES in lung homogenate in low 
BPA/OVA
no change in female lung histology
infl ammatory score in male high BPA/
OVA

Nygaard BAL B/c 0 21 1,400-4,500 drinking 10 μg x 2 i.p. 4&18d 10 μg i.n. 25d 30d  Eos in BALF in 100μg/ml

2015 OlaHsd &14,000-44,000 wo adjuvant  trend serum IgE anti-OVA in 100μg/ml

~serum IgG1, IgG2 anti-OVA
non detectable IL-5, IL-10, IL-17, IFNγ in 
BALF
~IL-4, IL-13, IL-10, IL-2, IL-17, IFNγ from 
splenocytes
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Bauer et al. [31] and Petzold et al. [32], also examined the effects of maternal 
(prenatal) BPA exposure on their mouse pups, but did not evaluate the offspring for 
asthma manifestations until they were in their adolescent and adults. Bauer et al. gave 
0.5, 5, 50 or 500 μg/Kg BW/day of BPA by gavage to C57BL/6 mice while Petzold gave 
1,000 μg/Kg BW/day of BPA in their drinking water in BALB/c (F0) mice during their 
pregnancy and until the pups were 3 weeks old. They then (at 3 weeks) sensitized 
these pups with 100 μg of endotoxin-depleted OVA with or without 

E. coli lipopolysaccharide (LPS) intratracheally (i.t.) three times, followed two 
weeks later by aerosol OVA challenge twice daily for three days (mucosal sensitization 
model), or with two injections of 100 μg OVA by i.p., when the adult offspring were 
6-8 weeks old and then 1% OVA aerosol at 7-11 postnatal weeks of age (peritoneal 
sensitization model), and analyzed AHR, eosinophils in BALF and lung histology. Since 
BALB/c mice are sexually mature around 28-49 days (average 35 days) [37], these are 
considered adult asthma models. They found that adult female offspring demonstrated 
enhanced whole-lung inϐlammation, compared with vehicle treated controls in 
this mucosal sensitization model. No effect was seen in males. The CD4+, CD8+ and 
CD4+CD25+FoxP3+ lymphocyte numbers were not signiϐicantly changed, compared to 
the vehicle controls in neither females nor males. Both groups did ϐind a decrease in 
the number of eosinophil in BALF in the females that had received with 0.5, 5, 50 μg/
Kg BW/day BPA exposures, but not in the males. The results of AHR measurements 
by invasive plethysmography were not different between the groups in the peritoneal 
sensitization model. When they examined lung histology, only adult female offspring 
consistently demonstrated enhanced whole-lung inϐlammation when compared with 
the controls. 

Petzold et al., gave 5 μg/ml of BPA in the drinking water of their pregnant BALB/c 
females (F0) and continued this until 3 weeks after they delivered their pups. Their 
adult offspring were sensitized with 20 μg OVA by i.p. injection at 6 and 20 weeks 
of age, and 40 μg of nasal OVA at 8 and 9 weeks old. At 9 weeks of age their AHR, 
eosinophil number in BALF, OVA-speciϐic IgE and cytokine production from splenocytes 
were assessed. They did not ϐind any effects of these maternal BPA exposures on the 
development of asthma in these adult offspring. No histological data are described for 
the mice with pre- and perinatal exposure to BPA. 

O’Brien et al., gave 50 ng, 50 μg or 50 mg/Kg (low, moderate and high) doses of 
BPA in rodent chow to BALB/c mice, starting from 2 weeks before mating, until the 
weaning of the offspring [33]. These BPA doses translate into about 8 ng, 8 μg and 
8 mg BPA/Kg BW/day, based on the chow consumption data from Bachmanov [38]. 
They then analyzed the effects of these three different doses of BPA on the serum IgE 
anti-OVA antibodies, cytokine and chemokine production, differential cell numbers 
and lung histology, in their male and female offspring. They detected modest increases 
in serum IgE anti-OVA in low BPA exposure group and 2-fold increase in moderate and 
high BPA exposed groups. IL-13 was increase in the moderate BPA exposure group and 
IFNᵞ production from splenocytes from all the BPA exposure groups was increased. 
Total leukocyte number in the BALF from female in their high BPA exposure group, 
and RANTES in lung homogenate in low BPA exposure groups were increased. 

Nygaard et al., fed 0, 10, or 100 μg/ml BPA in the maternal drinking water to BALB/c 
OlaHsd mice (about 0, 2 or 20 mg BPA/KgBW/day). Their drinking water consumption 
was about 3 ml/day during gestation and 12 ml/day during lactation. They used these 
data to calculate BPA intakes: 1.4 (during gestation) and 14 (during lactation) mg/Kg 
BW/day for those who received 10 μg/ml BPA in their drinking water and 14 during 
(gestation) and 44 (lactation) for those receiving 100 μg/ml BPA. The offspring were 
sensitized with 10 μg OVA by i.p. injection, without any adjuvant, on PND 4 and 18, 
and on PND 25, 10 μg OVA i.n. The pups were analyzed for the number of eosinophil in 
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their BALF, serum IgE, IgG1, IgG2 anti-OVA antibodies, and cytokine concentrations in 
BALF and cytokine production from splenocytes on PND 30. They detected signiϐicant 
increases of eosinophil numbers in BALF and a trend of high serum IgE anti-OVA in the 
100 μg/ml exposure group. 

Potential mechanism of effects of early BPA exposure

Fetal/newborn cells are skewed toward a Th2 pattern, partially due to low 
production of IL12 and the propensity of Th1 cells to undergo apoptosis after antigen 
exposure [39,40]. “Immune-maturing” infections promote a subsequent shift toward 
Th1 responses in most children, while an increasing proportion remain prone to 
develop pathological Th2 responses [41]. Most cases of asthma develop in early 
childhood [42] and often continue into adulthood, with a very large impact on public 
health and health care delivery. Thus a better understanding of the roles of genetics 
and environmental exposures during early life is very important [43]. 

Studies have shown the effects of BPA on the epigenetic alterations on several body 
systems in humans and rodent. These are focused mainly on endocrine/reproductive/
metabolic system, [44-53] developmental cells, [51,54-57] cancer, neuro/behaviour 
[58,59] and cardiac [60]. Genome-wide CpG methylation analyses of “saliva DNA” 
from 60 Egyptian girls aged 10-13 and urinary BPA in spot samples shows general 
association of higher urinary BPA concentration with less genomic methylation [61]. 
The pathway analyses shows reduced methylation involvement in immune function 
with increasing urinary BPA in this study. 

Non-genomic signaling is a potentially important mechanism of the effects of 
environmental estrogen exposure, which induces epigenetic modiϐications [62,63]. 
This response is initiated by ligand binding to receptors, ERα, ERβ or G protein coupled 
receptor (GPR)30, and activating signaling cascades that eventually alter kinase 
activities [62]. These kinases, phospho AKT, protein kinase A (PKA), protein kinase 
C (PKC) and extracellular signal-regulated kinase (ERK) phosphorylate one of the 
polycomb proteins, a histone methyltransferase (HMT) termed EZH2, [62,64] enhancer 
of zeste homolog 2 (EZH2) preferentially methylates histone H3K27, thus generating a 
binding site for the polycomb repressive complex (PRC)1 [65-68]. EZH2 also recruits 
DNA methyltransferase (DNMT) [68] and is a member of PRC2. Our group detected 
ERα on T-cells, mast cells and basophils [69,70]. The role of the PRC2 components in 
T-cell differentiation is somewhat controversial with observations indicating that they 
can have either activating [71,72] or repressive activities [73-76]. If these alterations 
persist, they can produce permanent epigenetic consequences (DNA methylation) 
within those sequences, therefore causing the development of asthma. 

DISCUSSION 

We have summarized here the results from eight human epidemiological studies 
and six experimental mouse models, all of which are related to the effect of early life 
BPA exposure on the development of allergic asthma. The reason for summarizing these 
together was our recognition that both experimental approaches have strengths and 
weaknesses in understanding the effects of BPA, and potentially other environmental 
estrogens, on the development of asthma in humans. For instance, direct human 
studies are the most important for understanding the relationship between exposures 
to chemicals like BPA at various phases of life, and the development and timing and 
manifestations of asthma. However, human studies have the drawback that their 
measurements of urinary BPA in the children may only be a biomarker for exposure to 
other chemicals that co-exist with BPA in certain environments. Further, while urinary 
measurements and excretion rates of chemicals like BPA are convenient, they only 
represent the conjugated (water soluble) BPA, which our group and others have shown 
are not active in cellular assays, most likely because they cannot bind to ERs [17,77]. 
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Carefully controlled and performed animal studies should overcome some of these 
shortcomings, since the major difference between the experimental and control groups 
should be the extent of their exposure to puriϐied BPA. While we and others have tried 
to carefully design the studies to closely imitate the human exposure, by delivering 
appropriate amounts of BPA through the oral route to achieve burdens of free BPA 
in blood and tissues of genetically susceptible mice, it is also important to consider 
the appropriate time for testing for the asthma phenotype. Further, the choice of the 
strain of mice to be used in these studies should match the genetic susceptibility to 
allergic disease of humans at the same stage of development. Thus, it is not surprising 
that results from the more sensitive strain of mice might be more likely to recapitulate 
ϐindings in human infants that are known to be susceptible to allergic sensitization. 

Thus, one of the reasons for reviewing mouse experiments and comparing their 
ϐindings with human epidemiological studies was to begin to conϐirm the relevance 
of the human studies well enough to consider hypothetical mechanisms for these 
common disease features and plan experiment to test these. For instance, this may be 
the case when we compare the results of our and Nygaard’s mouse studies with those 
of the human studies of Spanier et al. [21]. It may also be useful to look at the effect 
of postnatal BPA exposure of humans (e.g. Vaidya) in the context of current mouse 
studies that assessed the effect of BPA on asthma outcomes in childhood, adolescences 
and adults life. Clearly more thought and the development of new study designs may 
improve our understanding of this important process. 

Yet another approach that we and others are embarking on is to deϐine the 
mechanistic steps between pre and postnatal BPA exposures and the development of 
asthma. We anticipate that this approach may also deϐine biomarkers of BPA’s effects, 
which will be consistent between humans and mice. Preliminary results from these 
approaches suggest that exposure to BPA, especially during the prenatal period, may 
cause epigenetic alterations that could last throughout the lifetime of the mice and 
perhaps humans and even be passed to subsequent generations. Such studies may also 
help to explain some to the age and gender difference that are so prominent in human 
asthma, which starts as a male dominant disease in childhood, but are overtaken by 
women around the time of their menarche. This pattern may explain some of the 
gender effects in several of the human studies of pre and postnatal BPA exposures 
[19,23]. 

CONCLUSION 

We have reviewed here the effects of early BPA exposure on allergic asthma 
development in mouse models and human epidemiological studies. The effects of 
early BPA exposure were observed as an enhanced development of asthma before 
adolescent in the animal model. All of the human studies suggest that BPA exposure 
in early life enhances the likelihood of developing asthma on at least one of the study 
groups. In contrast, maternally derived BPA exposures in the various mouse systems 
seem to manifest themselves only during infancy. Comparing the age of wheezing 
illness in humans, suggest that BPA exposure might be an important component in 
bronchiolitis, a wheezing illness associated with concurrent viral infections, as well a 
risk factor the later development of asthma. Further studies on the timing of the onset 
of asthma as well as the molecular mechanisms of BPA’s effect may help in planning 
approaches for preventing these very common human diseases. 
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